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reciprocal axes. Hence for special positions the restrictions 
which are valid for the components of b are equally valid 
for the components of U referred to either crystal or reci- 
procal a x e s . .  
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Cruickshank (1956) - here referred to as CK - was the first 
to propose a procedure for the refinement of rigid-body 
vibration tensors. These are obtained in a least-squares 
procedure, in which the vibration tensors of the individual 
atoms are used as data. These tensors in turn have been 
obtained from a normal refinement with diffraction data. 
Recently Pawley (1964) - here referred to as P A -  described 
a least-squares method for refining rigid-body tensors by 
making direct use of diffraction data. The question arises 
whether or not the two approaches yield the same results. 
It turns out that this is true only under certain conditions, 
which will be determined in this paper. This provides a theo- 
retical foundation for the setting of weights in CK's deter- 
mination of rigid-body tensors. 

For  n atoms in the molecule assumed to be rigid, CK 
equation (2.3) may be written in matrix notation as 

U = R T ,  (1) 

where U represents the 6n components of the n atomic ten- 
sors, T the 12 components of CK's molecular tensors T 
and ¢o. R is a 6n x 12-matrix with the coefficients of CK (2.3). 
If  the increments ev and e~, of U and T are substituted in (1), 
then CK's normal equations (2-5) may be written as 

RPReT = RPe v ° b s  . ( 2 )  

m 

P is a 6n x 6n weighting matrix, R the transpose of R. Let 

Me v°bs = N (3) 

be the normal equations for determining ev obs, then PA's 
approach can be shown to have the normal equations 

RMR~r = R N .  (4) 

If  we now introduce evobs= M - i N  in (2), comparison of(2) 
and (4) shows that these equations are equivalent only if 
P =  M. Thus CK's and PA's approaches are equivalent, if 
M of the last cycle of structure-factor refinement is chosen 
to be the weighting matrix. M is proportional to the inverse 
of  the covariance matrix of the thermal parameters of the 
individual atoms, which in turn is obtained from the cov- 
ariance matrix of the intensity data. Hence the use of M as 
weighting matrix is in accordance with the Gaussian law 
of setting weights. 

The use of M as weighting matrix greatly increases the 
amount  of computation necessary in CK's determination of 
rigid-body tensors. Furthermore, M is usually not  avail- 
able, because structure-factor refinement is usually carried 
out with respect to atomic vibration tensors, which are re- 
ferred to the reciprocal axes of the crystal system rather 
than to the molecular axes. Thus we shall now derive a 
simple but sufficient approximation Q which may be used 
instead of M in all practical work. 

At first we assume that  the Cartesian coordinate system 
of the molecule coincides in direction with the (orthogonal) 
crystal system. The results obtained with this assumption 
will be generalized below. The elements of M are 

OIFI OIFI 
M~t= ~rw O U~" 0 U~ ' (5) 

w being the weights of the experimental data, F t h e  structure 
factor, r denotes the atom, s, t =  1 . . . 6  the independent 
components of U r. We now use unitary form factors f for 
all atoms, given b y f i = f Z r ,  where Zr is the number of elec- 
trons in the rth atom. Let Gr be the geometrical structure- 
factor term, and V8 = S~Sk with subscript s = s(i, k) for the 
elements of U r in the sequence 11, 22, 33, 12, 13, 23, and 
let S~ be the i th  component in reciprocal space (in A-a) 
of the reflexion considered, then 

M~tN4n4Z2r~Wf 2 exp (-2"ffp~h)G2VsVe . (6) 

h is a 3 x 1-column matrix of the Miller indices, Pr the an- 
isotropic parameter matrix. If one of the indices s or t is 
> 3, a factor of 2 enters on the right-hand side of (6) owing 
to the symmetry of U r. For  s > 3, t > 3 the factor is 4. These 
factors will be introduced into the final result. We now 
assume that the data have been obtained with equal quality 
in each spherical shell of the reciprocal space and that their 
number is infinite in a finite region. Furthermore, the tem- 
perature factor is assumed to be isotropic. Also some mean 
value C_~ h of  C~, assumed to be the same for each atom, is 
constant for integration over the shell. (These approxim- 
ations have also been used by Scheringer (1965) to derive an 
approximate matrix for positional parameters.) With these 
approximations the factors 4zr 4, w, f2, exp (-2h'prh) and 
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Gs z will form a constant C,n for an infinitesimal spherical 
shell in reciprocal space. Then (6) becomes 

"~ 2IC~,, fV~Vt (7) Mst - Z ,  
"sphere '~shell 

ISI is constant for a given shell, and we can write S,= 
ISI cos ~, Se = ISI sin q for an orthogonal coordinate system. 
Now integration of the various products V~ Vt over the shell 
leads to the integrals 

cosy, sinq, dv 
0 

withp, q=0,  1, 2, 3, 4, a n d p + q = 4 ,  and to the integral with 
p = q = 1. (The integrals are known in terms of/'-functions.) 
These integrals are the same for each shell considered and 
are denoted by q~t. Then (7) becomes 

M~, ~- CZ2qst . 

C represents the integral over all shells in reciprocal space 
and includes all constant factors which arise on integration 
over the shell. For an infinite number of data C approaches 
infinity, and so does M~r For establishing the weighting 
matrix, however, only the ratio M~ffC will be needed. If we 
now consider all atoms (r = 1 . . .  n), the approximate matrix 
Q becomes a block-diagonal matrix because of non-squared 
geometrical terms. With the introduction of the factor of 4 
the rth block is then 

13 t 1 3 1 
Qr=Z~ 1 1 3 

4 
4 

4 

(8) 

We now eliminate the initial restriction that the c00rdin. 
ate  system of the molecule coincides with the crystal system, 
but still retain orthogonality. Then the reference system in 
the spherical shell is rotated, but as integration is carried 
out over the whole shell, the integrals remain unchanged. 
Hence (8) holds for any orthogonal system to which the 

Ur-tensors are referred. Thus Q, should be used as weight- 
ing matrix for the rth atom. 

Equation (8) no longer holds when the Ur-tensors refer 
to oblique crystal axes. We can derive (8) for this case by 
making use of the requirement that, with a non-orthogonal 
transformation w.r.t, unit axes Q and M have to be equally 
transformed. Let this transformation be 

Xc = AXs 

for the components of X in A (C denotes the oblique, S 
the orthogonal (standard) crystal system); then M is trans- 
formed according to 

m 
Mc = L-1MsL -1 , (9) 

where L is a 6 × 6 matrix derived from the 9 x 9 Kronecker- 
product A × A. The elements of L are 

Lu,,=Ai~Akz for u=u(i, k), v=v(l, l) 
and 

Luv=Ai~A~m +A~mAkz for v=v(l, m) 

with u, v = 1 . . .  6. Qc is obtained from Qs by substituting Q 
for M in (9). 

If the appropriate weights are used in CK's method, CK's 
and PA's approaches are equivalent with respect to the use 
of diffraction data, and thus with respect to minimizing 
standard deviations. From the computational point of view 
PA's approach is certainly advantageous: the number of 
parameters to be refined and thus the number of normal 
equations to be set up is reduced to the minimum possible 
(see also Pawley, 1965). CK's approach, however, allows 
a number of tests to be made with the use of the atomic 
vibration tensors, of which PA's approach is inherently 
incapable. 

I am indebted to the Deutsche Forschungsgemeinschaft 
for financial support. 
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The yellow crystals of molybdenyl(VI) acetylacetonate (Fer- 
nelius, Terada & Bryant, 1960) suitable for crystallographic 
measurements were obtained from an acetylacetone solu- 
tion to which petroleum spirit had been added without 
mixing and left over several days at room temperature. The 
prism-shaped crystals have a great number of faces which 
are found by goniometric measurements to be related 
through a centre of symmetry. The smallest unit cell, found 
from oscillation and Weissenberg photographs taken with 
nickel-filtered Cu K radiation, has the dimensions 

a=8.19+0.02,  b=12.50+0.02, c=12.76+0.02A;  
~= 104.2+ 0.2 ° fl= 82.3 +0.2 ° y=92.4+ 0.2 ° 

and contains four formula units of MoO2(CsH702)2 
(Oeaac = 1"71 g.cm-3, Cobs= 1"79 g.cm-3). No conditions limit- 

ing possible reflexions were found. The goniometric meas- 
urements strongly indicated the pinacoidal class; the space 
group is P ~ (CI, No. 2). 

We do not intend to proceed with the crystal-structure 
analysis of this compound. We are indebted to the Rudjer 
Bo~kovi6 Institute, Zagreb for experimental facilities. 
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